Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38101762

RESUMO

Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant that elicits a wide range of toxic effects in exposed biota. Coastal zones in highly urbanized or industrial areas are particularly vulnerable to PFOS pollution. At present, information is lacking on biomarkers to assess PFOS effects on aquatic wildlife. This study investigated the efficacy of l-carnitine (or carnitine) and fatty acids as biomarkers of PFOS exposure in aquatic biota. The levels of PFOS, total and free carnitine, and 24 fatty acids (measured as fatty acid methyl esters or FAMEs) were measured in the liver, and muscle or blubber, of fish and dolphins sampled from Galveston Bay and the northern Gulf of Mexico (nGoM). Overall, bottlenose dolphins (Tursiops truncatus) had the highest hepatic PFOS levels. Galveston Bay fish, gafftopsail catfish (Bagre marinus), red drum (Sciaenops ocellatus), and spotted seatrout (Cynoscion nebulosus), had hepatic PFOS levels ∼8-13× higher than nGoM pelagic fish species, red snapper (Lutjanus campechanus) and yellowfin tuna (Thunnus albacares). The multivariate analysis of PFOS liver body-burdens and biomarkers found carnitine to be a more modal biomarker of PFOS exposure than FAMEs. Significant positive correlation of hepatic PFOS levels with total carnitine was evident for biota from Galveston Bay (fish only), and a significant correlation between PFOS and total and free carnitine was evident for biota from the nGoM (fish and dolphins). Given the essential role of carnitine in mediating fatty acid ß-oxidation, our results suggest carnitine to be a likely candidate biomarker of environmental PFOS exposure and indicative of potential dyslipidemia effects.


Assuntos
Golfinho Nariz-de-Garrafa , Peixes-Gato , Animais , Golfo do México , Carnitina , Baías , Golfinho Nariz-de-Garrafa/fisiologia , Biota , Biomarcadores , Ácidos Graxos
2.
Microbiol Spectr ; 11(1): e0173322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692305

RESUMO

Vibrio cholerae is the etiological agent of the illness cholera. However, there are non-O1/non-O139 V. cholerae (NOVC) strains that generally lack the toxin gene (ctx) and colonization factors that cause cholera. These NOVC strains are autochthonous members of estuarine environments and a significant cause of seafood-borne gastroenteritis in the United States. The objective of this study was to identify environmental parameters that correlate with NOVC prevalence in oysters, water, and sediment at three ecologically diverse locations in Mobile Bay, AL, including Dog River (DR), Fowl River (FR), and Cedar Point (CP). Oyster, water, and sediment samples were collected twice a month when conditions were favorable for NOVC growth and once a month when they were not. A most probable number (MPN)/real-time PCR assay was used to determine NOVC abundances. Environmental parameters were measured during sampling to determine their relationship, if any, with NOVC at each site. NOVC abundances in oysters at DR, FR, and CP were 0.87, 0.87, and -0.13 log MPN/g, respectively. In water, the median NOVC levels at DR, FR, and CP were 1.18, -0.13, and -0.82 log MPN/mL, and in sediment, the levels were 1.48, 1.87, and -0.03 log MPN/g, respectively. Correlations of NOVC abundances in oyster, water, and sediment samples with environmental parameters were largely site specific. For example, the levels of NOVC in oysters at DR had a positive correlation with temperature but a negative correlation with dissolved oxygen (DO) and nutrient concentrations, NO2-, NO3-, dissolved inorganic nitrogen (DIN), total dissolved nitrogen (TDN), and dissolved inorganic phosphorus (DIP). At FR, however, the levels of NOVC in oysters displayed only a negative correlation with NO2-. When grouping NOVC abundances by temperature, the main driving factor for prevalence, additional correlations with salinity, total cell counts, dissolved organic nitrogen (DON), and dissolved organic carbon (DOC) became evident regardless of the site. IMPORTANCE NOVC can cause gastrointestinal illness in humans, which typically occurs after the consumption of raw or undercooked seafood. Incidence rates of NOVC gastroenteritis have increased during the past decade. In this study, NOVC was enumerated from oysters, sediment, and water collected at three sites in Mobile Bay, with environmental parameters measured concurrently over the course of a year, to identify potential environmental drivers of NOVC abundances. The data from this study, from an area lacking in V. cholerae research, provide a useful baseline for risk analysis of V. cholerae infections. Defining correlations between NOVC and environmental attributes at different sites and temperatures within a dynamic system such as Mobile Bay provides valuable data to better understand the occurrence and proliferation of V. cholerae in the environment.


Assuntos
Cólera , Gastroenterite , Ostreidae , Vibrio cholerae , Humanos , Animais , Cães , Vibrio cholerae/genética , Alabama , Baías , Dióxido de Nitrogênio , Água
3.
Sci Rep ; 11(1): 19611, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608172

RESUMO

Mobile, apex predators are commonly assumed to stabilize food webs through trophic coupling across spatially distinct habitats. The assumption that trophic coupling is common remains largely untested, despite evidence that individual behaviors might limit trophic coupling. We used stable isotope data from common bottlenose dolphins across the Gulf of Mexico to determine if these apex predators coupled estuarine and adjacent, nearshore marine habitats. δ13C values differed among the sites, likely driven by environmental factors that varied at each site, such as freshwater input and seagrass cover. Within most sites, δ13C values differed such that dolphins sampled in the upper reaches of embayments had values indicative of estuarine habitats while those sampled outside or in lower reaches of embayments had values indicative of marine habitats. δ15N values were more similar among and within sites than δ13C values. Data from multiple tissues within individuals corroborated that most dolphins consistently used a narrow range of habitats but fed at similar trophic levels in estuarine and marine habitats. Because these dolphins exhibited individual habitat specialization, they likely do not contribute to trophic coupling between estuarine and adjacent marine habitats at a regional scale, suggesting that not all mobile, apex predators trophically couple adjacent habitats.

4.
Conserv Biol ; 35(6): 1833-1849, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34289517

RESUMO

Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.


RESUMEN: Reconociendo que era imperativo evaluar la recuperación de especies y el impacto de la conservación, la Unión Internacional para la Conservación de la Naturaleza (UICN) convocó en 2012 al desarrollo de una "Lista Verde de Especies" (ahora el Estatus Verde de las Especies de la UICN). Un marco de referencia preliminar de una Lista Verde de Especies para evaluar el progreso de las especies hacia la recuperación, publicado en 2018, proponía 2 componentes separados pero interconectados: un método estandarizado (i.e., medición en relación con puntos de referencia de la viabilidad de especies, funcionalidad y distribución antes del impacto) para determinar el estatus de recuperación actual (puntuación de recuperación de la especie) y la aplicación de ese método para estimar impactos en el pasado y potenciales de conservación basados en 4 medidas (legado de conservación, dependencia de conservación, ganancia de conservación y potencial de recuperación). Probamos el marco de referencia con 181 especies representantes de diversos taxa, historias de vida, biomas, y categorías (riesgo de extinción) en la Lista Roja de la IUCN. Con base en la distribución observada de la puntuación de recuperación de las especies, proponemos las siguientes categorías de recuperación de la especie: totalmente recuperada, ligeramente mermada, moderadamente mermada, mayormente mermada, gravemente mermada, extinta en estado silvestre, e inderterminada. Cincuenta y nueve por ciento de las especies se consideraron mayormente o gravemente mermada. Aunque hubo una relación negativa entre el riesgo de extinción y la puntuación de recuperación de la especie, la variación fue considerable. Algunas especies en las categorías de riesgo bajas fueron evaluadas como más lejos de recuperarse que aquellas con alto riesgo. Esto enfatiza que la recuperación de especies es diferente conceptualmente al riesgo de extinción y refuerza la utilidad del Estado Verde de las Especies de la UICN para comprender integralmente el estatus de conservación de especies. Aunque el riesgo de extinción no predijo el legado de conservación, la dependencia de conservación o la ganancia de conservación, se correlacionó positivamente con la potencial de recuperación. Solo 1.7% de las especies probadas fue categorizado como cero en los 4 indicadores de impacto de la conservación, lo que indica que la conservación ha jugado, o jugará, un papel en la mejoría o mantenimiento del estatus de la especie la gran mayoría de ellas. Con base en nuestros resultados, diseñamos una versión actualizada del marco de referencia para la evaluación que introduce la opción de utilizar una línea de base dinámica para evaluar los impactos futuros de la conservación en el corto plazo y redefine corto plazo como 10 años.


Assuntos
Espécies em Perigo de Extinção , Extinção Biológica , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Risco
5.
J Anim Ecol ; 90(5): 1191-1204, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33608907

RESUMO

Dolphin morbillivirus (DMV) is a virulent pathogen that causes high mortality outbreaks in delphinids globally and is spread via contact among individuals. Broadly ranging nearshore and open-ocean delphinids are likely reservoir populations that transmit DMV to estuarine populations. We assessed the seroprevalence of DMV antibodies and determined the habitat use of common bottlenose dolphins, Tursiops truncatus truncatus, from two estuarine sites, Barataria Bay and Mississippi Sound, in the northern Gulf of Mexico. We predicted that risk to DMV exposure in estuarine dolphins is driven by spatial overlap in habitat use with reservoir populations. Serum was collected from live-captured dolphins and tested for DMV antibodies. Habitat use of sampled individuals was determined by analysing satellite-tracked movements and stable isotope values. DMV seroprevalences were high among dolphins at Barataria Bay (37%) and Mississippi Sound (44%), but varied differently within sites. Ranging patterns of Barataria Bay dolphins were categorized into two groups: Interior and Island-associated. DMV seroprevalences were absent in Interior dolphins (0%) but high in Island-associated dolphins (45%). Ranging patterns of Mississippi Sound dolphins were categorized into three groups: Interior, Island-east and Island-west. DMV seroprevalences were detected across Mississippi Sound (Interior: 60%; Island-east: 20%; and Island-west: 43%). At both sites, dolphins in habitats with greater marine influence had enriched δ13 C values, and Barataria Bay dolphins with positive DMV titres had carbon isotope values indicative of marine habitats. Positive titres for DMV antibodies were more common in the lower versus upper parts of Barataria Bay but evenly distributed across Mississippi Sound. A dolphin's risk of exposure to DMV is influenced by how individual ranging patterns interact with environmental geography. Barataria Bay's partially enclosed geography likely limits the nearshore or open-ocean delphinids that carry DMV from interacting with dolphins that use interior, estuarine habitats, decreasing their exposure to DMV. Mississippi Sound's relatively open geography allows for greater spatial overlap and mixing among estuarine, nearshore and/or open-ocean cetaceans. The spread of DMV, and likely other diseases, is affected by the combination of individual movements, habitat use and the environment.


Assuntos
Golfinho Nariz-de-Garrafa , Golfinhos Comuns , Morbillivirus , Animais , Ecossistema , Golfo do México , Estudos Soroepidemiológicos
6.
PLoS One ; 16(1): e0243478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33395404

RESUMO

This study provides regional-scale data on drivers of horseshoe crab (Limulus polyphemus) presence along the northcentral Gulf of Mexico coast and has implications for understanding habitat suitability for sparse horseshoe crab populations of conservation concern worldwide. To collect baseline data on the relationship between environmental factors and presence of horseshoe crabs, we surveyed four sites from the Fort Morgan peninsula of Mobile Bay, Alabama (AL) to Horn Island, Mississippi (MS). We documented number, size and sex of live animals, molts, and carcasses as metrics of horseshoe crab presence and demographics for two years. Data were compared to in situ and remotely sensed environmental attributes to assess environmental drivers of occurrence during the time of study. Overall, greater evidence of horseshoe crab presence was found at western sites (Petit Bois and Horn Islands) compared to eastern sites (Dauphin Island, Fort Morgan peninsula), mediated by a combination of distance from areas of high freshwater discharge and interannual variation in weather. Higher sex ratios also were found associated with higher occurrence, west of Mobile Bay. Land cover, particularly Bare Land and Estuarine Emergent Wetland classes that are common to western sites, was most predictive of live animal and to some extent carcass occurrence. Our findings suggest that small-scale variation in habitat quality can affect occurrence of horseshoe crabs in sparse populations where density is not a limiting factor. Data from molts and carcasses were informative to supplement live animal data and may be useful to enhance ecological assessment and support conservation and management in regions with sparse populations.


Assuntos
Meio Ambiente , Caranguejos Ferradura/fisiologia , Animais , Baías , Tamanho Corporal , Clima , Geografia , Golfo do México , Caranguejos Ferradura/anatomia & histologia , Modelos Lineares , Rios , Razão de Masculinidade , Inquéritos e Questionários , Fatores de Tempo
7.
Front Vet Sci ; 7: 235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457921

RESUMO

Common bottlenose dolphins (Tursiops truncatus) exposed to freshwater or low salinity (<10 practical salinity units; PSU) for prolonged periods of time have been documented to develop skin lesions, corneal edema and electrolyte abnormalities, and in some instances they have died. Here we review a case of an out-of-habitat subadult, female common bottlenose dolphin that remained in a freshwater lake in Seminole, Alabama for at least 32 days. Due to concerns for the dolphin's health a rescue was initiated. At the time of rescue bloodwork results indicated minor electrolyte abnormalities (hyponatremia, hypochloremia, hypoosmolality). Renal function was not affected (normal creatinine and urea nitrogen) and all other bloodwork parameters (hemogram; serum biochemistry analytes) were within normal limits. The dolphin was deemed healthy enough for immediate relocation and release. A satellite-linked tag was attached to the dorsal fin to track the dolphin following its relocation to a nearby brackish water bay (Perdido Bay, AL), a known habitat for bottlenose dolphins. Twelve weeks following release, the dolphin was found dead as a result of a fisheries interaction (peracute underwater entrapment). A full necropsy was conducted and there was complete resolution of the skin pallor and skin lesions and no evidence of chronic renal or central nervous system lesions. Post-mortem analysis of vitreous humor (used as a proxy for serum analytes and to determine post-mortem interval) was challenging to interpret and has not been validated in dolphins. This supports the need for future research in cetaceans to establish a species-specific approach. Elevated barium (Ba) concentrations in tooth dentin corresponded to increased seasonal freshwater discharge patterns, confirming repeated annual exposure to low salinity conditions prior to death and indicating freshwater exposure may pose an ongoing threat to dolphins in the region. This case provides a unique opportunity to follow the progression of prolonged freshwater exposure and recovery in a bottlenose dolphin and highlights that dolphins in nearshore habitats face a combination of persistent natural and human associated threats.

8.
Trends Ecol Evol ; 34(5): 459-473, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30879872

RESUMO

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Ecossistema
9.
Dis Aquat Organ ; 119(1): 1-16, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068499

RESUMO

An unusual mortality event (UME) involving primarily common bottlenose dolphins Tursiops truncatus of all size classes stranding along coastal Louisiana, Mississippi, and Alabama, USA, started in early 2010 and continued into 2014. During this northern Gulf of Mexico UME, a distinct cluster of perinatal dolphins (total body length <115 cm) stranded in Mississippi and Alabama during 2011. The proportion of annual dolphin strandings that were perinates between 2009 and 2013 were compared to baseline strandings (2000-2005). A case-reference study was conducted to compare demographics, histologic lesions, and Brucella sp. infection prevalence in 69 UME perinatal dolphins to findings from 26 reference perinates stranded in South Carolina and Florida outside of the UME area. Compared to reference perinates, UME perinates were more likely to have died in utero or very soon after birth (presence of atelectasis in 88 vs. 15%, p < 0.0001), have fetal distress (87 vs. 27%, p < 0.0001), and have pneumonia not associated with lungworm infection (65 vs. 19%, p = 0.0001). The percentage of perinates with Brucella sp. infections identified via lung PCR was higher among UME perinates stranding in Mississippi and Alabama compared to reference perinates (61 vs. 24%, p = 0.01), and multiple different Brucella omp genetic sequences were identified in UME perinates. These results support that from 2011 to 2013, during the northern Gulf of Mexico UME, bottlenose dolphins were particularly susceptible to late-term pregnancy failures and development of in utero infections including brucellosis.


Assuntos
Golfinho Nariz-de-Garrafa , Sofrimento Fetal/veterinária , Pneumonia/veterinária , Animais , Brucella/genética , Brucella/isolamento & purificação , Brucelose/epidemiologia , Brucelose/microbiologia , Brucelose/veterinária , Meio Ambiente , Feminino , Sofrimento Fetal/epidemiologia , Sofrimento Fetal/patologia , Golfo do México/epidemiologia , Morbillivirus/isolamento & purificação , Infecções por Morbillivirus/epidemiologia , Infecções por Morbillivirus/veterinária , Infecções por Morbillivirus/virologia , Filogenia , Pneumonia/epidemiologia , Pneumonia/microbiologia , Pneumonia/patologia , Gravidez
10.
Dis Aquat Organ ; 112(2): 161-75, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25449327

RESUMO

An unusual mortality event (UME) was declared for cetaceans in the northern Gulf of Mexico (GoM) for Franklin County, Florida, west through Louisiana, USA, beginning in February 2010 and was ongoing as of September 2014. The 'Deepwater Horizon' (DWH) oil spill began on 20 April 2010 in the GoM, raising questions regarding the potential role of the oil spill in the UME. The present study reviews cetacean mortality events that occurred in the GoM prior to 2010 (n = 11), including causes, durations, and some specific test results, to provide a historical context for the current event. The average duration of GoM cetacean UMEs prior to 2010 was 6 mo, and the longest was 17 mo (2005-2006). The highest number of cetacean mortalities recorded during a previous GoM event was 344 (in 1990). In most previous events, dolphin morbillivirus or brevetoxicosis was confirmed or suspected as a causal factor. In contrast, the current northern GoM UME has lasted more than 48 mo and has had more than 1000 reported mortalities within the currently defined spatial and temporal boundaries of the event. Initial results from the current UME do not support either morbillivirus or brevetoxin as primary causes of this event. This review is the first summary of cetacean UMEs in the GoM and provides evidence that the most common causes of previous UMEs are unlikely to be associated with the current UME.


Assuntos
Cetáceos , Monitoramento Ambiental/métodos , Animais , Ecossistema , Golfo do México
11.
PLoS One ; 9(8): e104440, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116465

RESUMO

The frequency and intensity of anoxic and hypoxic events are increasing worldwide, creating stress on the organisms that inhabit affected waters. To understand the effects of low dissolved oxygen stress on oysters, hatchery-reared oysters were placed in cages and deployed along with continuously recording environmental data sondes at a reef site in Mobile Bay, AL that typically experiences low oxygen conditions. To detect and measure sublethal stress, we measured growth and survival of oysters as well as expression of three biomarkers, heat shock protein 70 (HSP70), hypoxia inducible factor (HIF) and phospho-p38 MAP kinase, in tissues from juvenile and adult oysters. Survival rates were high for both juvenile and adult oysters. Expression levels of each of the 3 isoforms of HSP 70 were negatively correlated to dissolved oxygen (DO) concentrations, suggesting that HSP 70 is useful to quantify sublethal effects of DO stress. Results for HIF and phospho-p38 MAP kinase were inconclusive. Test deployments of oysters to assess expression of HSP 70 relative to environmental conditions will be useful, in addition to measuring abiotic factors, to identify appropriate sites for restoration, particularly to capture negative effects of habitat quality on biota before lethal impacts are incurred.


Assuntos
Ostreidae/metabolismo , Oxigênio/metabolismo , Estresse Fisiológico , Alabama , Animais , Biomarcadores/metabolismo , Meio Ambiente , Proteínas de Choque Térmico HSP70/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Ostreidae/crescimento & desenvolvimento , Fosforilação , Isoformas de Proteínas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
PLoS One ; 9(3): e91683, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24670971

RESUMO

The explosion of the Deepwater Horizon drilling platform created the largest marine oil spill in U.S. history. As part of the Natural Resource Damage Assessment process, we applied an innovative modeling approach to obtain upper estimates for occupancy and for number of manatees in areas potentially affected by the oil spill. Our data consisted of aerial survey counts in waters of the Florida Panhandle, Alabama and Mississippi. Our method, which uses a Bayesian approach, allows for the propagation of uncertainty associated with estimates from empirical data and from the published literature. We illustrate that it is possible to derive estimates of occupancy rate and upper estimates of the number of manatees present at the time of sampling, even when no manatees were observed in our sampled plots during surveys. We estimated that fewer than 2.4% of potentially affected manatee habitat in our Florida study area may have been occupied by manatees. The upper estimate for the number of manatees present in potentially impacted areas (within our study area) was estimated with our model to be 74 (95%CI 46 to 107). This upper estimate for the number of manatees was conditioned on the upper 95%CI value of the occupancy rate. In other words, based on our estimates, it is highly probable that there were 107 or fewer manatees in our study area during the time of our surveys. Because our analyses apply to habitats considered likely manatee habitats, our inference is restricted to these sites and to the time frame of our surveys. Given that manatees may be hard to see during aerial surveys, it was important to account for imperfect detection. The approach that we described can be useful for determining the best allocation of resources for monitoring and conservation.


Assuntos
Ecossistema , Monitoramento Ambiental , Poluição por Petróleo , Trichechus/fisiologia , Alabama , Animais , Florida , Geografia , Mississippi , Inquéritos e Questionários
13.
Environ Sci Technol ; 46(23): 12787-95, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23131011

RESUMO

During and after the Deepwater Horizon Oil Spill (DWHOS), oysters (Crassostrea virginica) were exposed to oil and susceptible to incidental consumption of surface and subsurface oil materials. We determined the contribution of oil materials from the DWHOS to diet of oysters by comparing carbon (C) and nitrogen (N) stable isotope ratios in oyster shell to ratios in suspended particulate matter (SPM) and in fresh and weathered oil. Average δ(13)C and δ(15)N values in oyster shell (-21 ± 1‰ and 9-11‰, respectively) were consistent with consumption of naturally available SPM as opposed to values in oil (-27 ± 0.2‰, 1.6 ± 0.4‰). Stable isotope ratios in oyster adductor muscle were similar to shell for δ(15)N but not δ(13)C, suggesting either a recent shift in diet composition or differential assimilation of C between tissue types. We found no evidence of assimilation of oil-derived C and N and, therefore, no evidence of an oyster-based conduit to higher trophic levels. Trace elements in shell were inconclusive to corroborate oil exposure. These findings are not an indication that oysters were not exposed to oil; rather they imply oysters either did not consume oil-derived materials or consumed too little to be detectable compared to natural diet.


Assuntos
Crassostrea/metabolismo , Monitoramento Ambiental , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Material Particulado/análise , Material Particulado/metabolismo
14.
PLoS One ; 7(7): e41155, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815950

RESUMO

An unusual number of near term and neonatal bottlenose dolphin (Tursiops truncatus) mortalities occurred in the northern Gulf of Mexico (nGOM) in 2011, during the first calving season after two well documented environmental perturbations; sustained cold weather in 2010 and the Deepwater Horizon oil spill (DWHOS). Preceding the stranding event, large volumes of cold freshwater entered the nGOM due to unusually large snowmelt on the adjacent watershed, providing a third potential stressor. We consider the possibility that this extreme cold and freshwater event contributed to the pattern of perinatal dolphin strandings along the nGOM coast. During the 4-month period starting January 2011, 186 bottlenose dolphins, including 46% perinatal calves (nearly double the percentage for the same time period from 2003-2010) washed ashore from Louisiana to western Florida. Comparison of the frequency distribution of strandings to flow rates and water temperature at a monitoring buoy outside Mobile Bay, Alabama (the 4(th) largest freshwater drainage in the U.S.) and along the nGOM coast showed that dolphin strandings peaked in Julian weeks 5, 8, and 12 (February and March), following water temperature minima by 2-3 weeks. If dolphin condition was already poor due to depleted food resources, bacterial infection, or other factors, it is plausible that the spring freshet contributed to the timing and location of the unique stranding event in early 2011. These data provide strong observational evidence to assess links between the timing of the DWHOS, other local environmental stressors, and mortality of a top local predator. Targeted analyses of tissues from stranded dolphins will be essential to define a cause of death, and our findings highlight the importance of considering environmental data along with biological samples to interpret stranding patterns during and after an unusual mortality event.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Alabama , Ciências da Nutrição Animal , Animais , Ecologia , Meio Ambiente , Monitoramento Ambiental/métodos , Água Doce , Geografia , Golfo do México , Proliferação Nociva de Algas , Temperatura , Poluentes da Água/análise
16.
Mar Pollut Bull ; 56(5): 860-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18348892

RESUMO

We assessed short-term ecological and potential human health effects of wastewater treatment plant (WTP) effluent by measuring delta 15N per thousand and microbial concentrations in oysters and suspended particulate matter (SPM). We also tested male-specific bacteriophage (MSB) as an alternative to fecal coliforms, to assess potential influence of wastewater contamination on shellfish. WTP effluent did not affect oyster growth or survival, but SPM and oysters acquired wastewater-specific delta 15N per thousand. delta 15N values were depleted near the WTP, typical of low-level processed wastewater. Fecal coliform and MSB concentrations were higher in samples taken closest to the WTP, and MSB values were significantly correlated with delta 15N per thousand in oyster tissues. Overall, oysters demonstrated relatively rapid integration and accumulation of wastewater-specific delta 15N per thousand and indicator microorganisms compared to water samples. These data suggest oysters were superior sentinels compared to water, and MSB was a more reliable indicator of wastewater influence on shellfish than fecal coliforms.


Assuntos
Crassostrea/microbiologia , Eliminação de Resíduos Líquidos , Microbiologia da Água , Poluentes da Água/análise , Alabama , Animais , Bacteriófagos/isolamento & purificação , Clorofila/análise , Clorofila A , Crassostrea/crescimento & desenvolvimento , Enterobacteriaceae/isolamento & purificação , Monitoramento Ambiental , Nitratos/análise , Nitritos/análise , Isótopos de Nitrogênio/análise , Oxigênio/análise , Compostos de Amônio Quaternário/análise
17.
Mar Pollut Bull ; 48(1-2): 137-43, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14725885

RESUMO

To test and refine methods to detect nutrient enrichment and resulting eutrophication, we applied the Waquoit Bay nitrogen loading model (NLM) and Estuarine loading model (ELM) to estuaries of Pleasant Bay that receive increasing but low N loads (25-199 kg N ha(-1) yr(-1)) from land. Contributions of wastewater to these estuaries increased from 7% to 63% as N loads increased, and modeled estimates of dissolved inorganic nitrogen in the water were within approximately 27% of measured values. N isotopic signatures in suspended and benthic organic matter and in tissue of quahogs increased as wastewater contributions to N loads increased, with clams approximately 4 per thousand heavier than organic matter, indicating that even at these low N loads, N from land-derived sources moved detectably up the food web. These results extend the application of NLM and ELM to detect incipient levels of N enrichment and demonstrate that these models can be used in conjunction with isotope measurements as the basis for food web analyses in a system exposed to relatively lower N loads than previously studied.


Assuntos
Eutrofização , Cadeia Alimentar , Modelos Teóricos , Nitrogênio/análise , Animais , Monitoramento Ambiental , Previsões , Massachusetts , Moluscos , Isótopos de Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...